Moderne Verfahrensansätze und Cloud-Technologien bieten neue Möglichkeiten
In unserer datengetriebenen Welt sind qualitative Datenprodukte der Schlüssel zum Geschäftserfolg. Doch um solche Produkte effizient zu skalieren, bedarf es einer robusten Dateninfrastruktur. Hier kommt die Data Fabric ins Spiel. Eine sukzessiv (agil) aufgebaute, Data Governance orientierte Data Fabric stellt sicher, dass Datenqualität, -schutz und -nutzung im Zentrum aller Bemühungen stehen.
Daten, Prozesse, Business schneller verstehen und den Data Driven ROI maximieren
In der digitalen Welt, in der wir heute leben, haben Daten eine unbestreitbar zentrale Rolle eingenommen. Durch die massiven Datenmengen, die ständig generiert werden, steigt die Notwendigkeit, sie effizient zu verwalten, zu analysieren und zu interpretieren. Durch die Integration von kross funktionaler Zusammenarbeit, Dual-Track Agile Methodik und der Anwendung modernster Technologien wie ChatGPT Interpreter und InfoZoom, ermöglicht ARDPS Organisationen, ihre Dateninvestitionen zu maximieren und erfolgreiche Daten-Projekte und Produkte zu realisieren.
Erst der Dreiklang Datendurchgängigkeit, Prozessdurchgängigkeit und durchgängige Datenanalyse macht Unternehmen Data Driven und Customer Centric.
Für eine erfolgreiche Transformation zu einem datengetriebenen Unternehmen ist es wichtig Prozesse und Daten einheitlich zu betrachten und zu verstehen sowie Datendurchgängigkeit herzustellen. Dies bedeutet, dass Daten über verschiedene Abteilungen und Systeme hinweg nahtlos fließen können, in einer konsistenten Form vorliegen und die operativen Prozesse und Menschen durchgängig zu unterstützen.
In der heutigen digitalen Welt generieren Unternehmen und Organisationen kontinuierlich große Mengen an Daten. Die Verarbeitung und Analyse dieser Daten hat sich zu einem wichtigen Instrument entwickelt, um Erkenntnisse und Einblicke zu gewinnen und wettbewerbsfähig zu bleiben. Während viele Organisationen früher Datenprojekte durchgeführt haben, um ihre Daten zu analysieren, verschiebt sich der Fokus inzwischen auf die Erstellung von Datenprodukten.
Die Datenstrategie entscheidet zunehmend über den Erfolg des gesamten Unternehmens
Warum eine Data Strategy?
Ich denke, mittlerweile ist jedem Unternehmen klar geworden, dass der kompetente Umgang mit Daten und die Steigerung der Datenintelligenz ein wichtiger Erfolgsfaktor für die Wettbewerbsfähigkeit ist. Gezeigt hat sich in den letzten Jahren, dass bloßes experimentieren mit Daten und neuen Technologien wie Big Data, KI und Cloud auch kein Garant für Erfolg ist. Dies liegt meiner Meinung nach häufig an den von der Unternehmensstrategie abgekoppelten und isolierten Maßnahmen Daten gewinnbringend einzusetzen. Somit sind häufig weitere Silos entstanden, die eher verhindern, einen erkennbar positiven Effekt für den Unternehmenserfolg zu erzielen. Verstärkend kam hinzu, dass sich einerseits kein ROI (Return on Investment) einstellte und man zunehmend Geld verloren hat und andererseits wertvolle Zeit verloren ging, während andere Unternehmen an einem vorbeizogen, die es eher verstanden haben Daten zielwirksam zur Steigerung ihrer Wettbewerbsfähigkeit einzusetzen. Häufig sind es Unternehmen, die man nicht mal als Wettbewerber auf den Schirm hatte.
Surfen durch den Datendschungel, Daten verstehen und Daten shoppen (Shopping for Data)
Haben Sie schon den Begriff „Shopping for Data“ gehört? Dieser wird gerne im Zusammenhang mit den Begriffen Data Catalogue und Data Democratization in einen Topf geworfen. Mit Data Democratization ist gemeint, dass Menschen einfach und pragmatisch auf jegliche Art von Daten, die sie für ihre Zwecke benötigen zugreifen und diese verwenden können, bzw. jederzeit bereit sind Daten mit anderen zu teilen. Das natürlich jederzeit compliancekonform. In Organisationen wird dies durch einen Data Catalogue ermöglicht oder auch immer häufiger gerne Data Marketplace genannt, auf dem Sie wie in einem Onlineshop auf Einkaufstour nach Daten und Datenprodukten gehen (Shopping for Data).
Die Menge der Daten alleine ist kein entscheidender Wettbewerbsfaktor
Immer mehr Organisationen setzen auf datengestützte Analysen in ihrer Entscheidungsfindung und digitalisieren ihre Prozesse, Produkte und Services. Dabei wird verstärkt auf Verfahren der Künstlichen Intelligenz (KI) gesetzt. Doch häufig bleibt der erhoffte Erfolg aus.
Es ist eine sehr verbreitete Annahme, dass die Auswertung großer Mengen an Kundendaten der Organisation einen uneinholbaren Wettbewerbsvorteil verschaffen kann. Dies beruht auf der These: Je mehr Kunden eine Organisation hat, desto mehr Daten kann diese zur Produkt- und Serviceverbesserung nutzen und damit weitere Kunden anziehen, von denen noch mehr Daten gesammelt werden können.
Data Governance (Datensteuerung) umfasst in Summe die Menschen, Prozesse und Technologien, die zur Verwaltung, zum Schutz und zur Steigerung des “Datenkapitals”einerOrganisationbenötigt werden, um allgemein verständliche, korrekte, vollständige, vertrauenswürdige, sichere, auffindbare Unternehmensdaten und derenwertorientierte Nutzunggarantieren zu können.
Wie Organisationen ihre Daten in Geld bewerten können und warum Data Governance sich selbst finanziert.
Viele Unternehmen hadern noch mit dem Gedanken eine Data Governance einzuführen und fragen sich, welchen Mehrwert hat eigentlich Data Governance? Natürlich kann man jetzt sagen, was gibt es da noch zu überlegen. Wer im Zuge der Digitalisierung wettbewerbsfähig bleiben möchte, kommt an einer Data Strategy und der Einführung einer Data Governance nicht vorbei. Zumindest liest man das permanent in der Fachpresse und hört es ständig von vielen Beratern. Andererseits ist es absolut berechtigt in diesem Zusammenhang die ökonomische Frage zu stellen, welchen Mehrwert in Geld bringt eine Data Governance der Organisation und wieviel bin ich bereit zu investieren bzw. wie wird mein ROI (Return On Invest) aussehen.
Wie Organisationen von einer lückenhaften Nachdokumentierung zu einem transparenten Datenmanagement kommen.
Herausforderung von Data Governance
Eines der Ziele von Data Governance ist es eine möglichst gute Transparenz über die Verarbeitung und Verwendung von Daten über die Systeme hinweg herzustellen, um den Grad der Compliance-Konformität festzustellen und stetig zu monitoren sowie ein compliance-konformes Verhalten beim Umgang mit Daten zu fördern. Zusätzlich ermöglicht die Transparenz stetig Schwächen der Leistungsfähigkeit von Daten zu erkennen und Maßnahmen zur Verbesserung abzuleiten. Dies fördert die Qualität von Datenanalyse- und Digitalisierungsprojekten.
Wie Data Governance zum Innovator wird und Mehrwert liefert
Viele Unternehmen wandelten sich in den letzten Jahren zu agilen Organisationsformen, um sich den Herausforderungen von schnellen Anforderungsänderungen besser stellen zu können. Auch das Unternehmen, für welches ich tätig bin, befindet sich mitten in diesem Wandel. Hinzu kommt, dass Daten und datengetriebene Prozesse immer stärker im Fokus stehen. Wer einen Vorsprung in der Datenintelligenz erlangt und diesen optimal zu nutzen weiß, erlangt auch einen erfolgskritischen Wettbewerbsvorsprung, den es stetig auszubauen bzw. auf lange Sicht zu halten gilt.
Wer Datenqualität und Prozessqualität als eine Einheit betrachtet, hat gute Zukunftsaussichten
Das Forschungsprojekt „World Management Survey“ beschäftigt sich mit der Einführung und Anwendung von Managementpraktiken in über 12.000 Unternehmen aus 34 Ländern. Es wurde gemessen, wie gut eine Organisation die wesentlichen Führungsmethoden in vier Bereichen beherrscht: Produktionsmanagement, Performance-Monitoring, Zielvorgaben und Talentmanagement.
Die Auswertung der Daten zeigt zwei wesentliche Erkenntnisse.
Für eine optimale Bewertung und Messung der Datenqualität sowie der Ableitung gezielter Verbesserungsmaßnahmen, müssen im Vorfeld entsprechende Datenqualitätskriterien definiert werden.
In der April-Ausgabe des Harvard Business Manager habe ich einen interessanten Artikel zu den Schlüsselfaktoren von erfolgreichen Innovationen gelesen.
Nachfolgend eine kurze Zusammenfassung des Artikels.
Stelios Kavadias, Kostas Ladas und Christoph Loch1 gingen im Rahmen einer Studie der Frage nach: Wie lässt sich eine Branche revolutionieren? Hierzu untersuchten sie 40 Unternehmen aus unterschiedliche Branchen mit unterschiedlich erfolgreichen Geschäftsmodellen.
Technik und Markt verbindet
Erkenntnisse aus der Studie können wie folgt zusammengefasst werden.